(5x^2-8x+12)+(-5=15x-3x^2)

Simple and best practice solution for (5x^2-8x+12)+(-5=15x-3x^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x^2-8x+12)+(-5=15x-3x^2) equation:



(5x^2-8x+12)+(-5=15x-3x^2)
We move all terms to the left:
(5x^2-8x+12)+(-5-(15x-3x^2))=0
We get rid of parentheses
(-5-(15x-3x^2))+5x^2-8x+12=0
We calculate terms in parentheses: +(-5-(15x-3x^2)), so:
-5-(15x-3x^2)
determiningTheFunctionDomain -(15x-3x^2)-5
We get rid of parentheses
3x^2-15x-5
Back to the equation:
+(3x^2-15x-5)
We add all the numbers together, and all the variables
5x^2-8x+(3x^2-15x-5)+12=0
We get rid of parentheses
5x^2+3x^2-8x-15x-5+12=0
We add all the numbers together, and all the variables
8x^2-23x+7=0
a = 8; b = -23; c = +7;
Δ = b2-4ac
Δ = -232-4·8·7
Δ = 305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{305}}{2*8}=\frac{23-\sqrt{305}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{305}}{2*8}=\frac{23+\sqrt{305}}{16} $

See similar equations:

| r+44/8=8 | | 2v+24=92 | | 13x+3=6x-25 | | F(x)=2x^2+6-8 | | 3x=80=65 | | 9(2x-13)-7=20 | | -6a+45=3 | | x+1/6-x+2/2=1/4 | | |x|2-6|x|+5=0 | | 1/4x^2+1/2x+0,25=0 | | 1/4x2+1/2x+0,25=0 | | 8+7x-26=48 | | y2+ 9= 12 | | 1x+2=3+3x | | (8-x)²=64 | | 20-5x=3(4-x) | | -6(x+2)+3=2(x-1)-4x | | X3+2x=150 | | -x2+x-1=0 | | -5(v-8)=34-6v | | 729=x6 | | 7776=6x | | 169z2+13z-1=0 | | -8-5x=26 | | k-1=33 | | -6(-x+5)=-18 | | 7(a+7)=-23-2a | | 4x-7=7(2x+3) | | -2/5+y=-3/14 | | 4x-7=7(2x+3 | | 6x+12=2(x+2) | | 3x—6=x+4 |

Equations solver categories